Weit draußen zieht ein einzelnes Elektron seine Kreise

Physik: Stuttgarter Forscher zeigen, dass die schwingende Atomwolke auf nur einen Befehl hört. Von Martin Schäfer


Genauso wie ein schwarzer Hühnchen, der seine Herde umkreist und die Schafe in kollektive Bewegung versetzt, reagiert die mächtige Atomwolke auf das winzige Elektron: Sie beginnt zu schwingen. Das Fachmagazin „Nature“, in dem Balewski und Pfau ihre jüngsten Ergebnisse veröffentlichen, schreibt dazu sinngemäß: die Atomwolke tanzt nach der Pfeife des Elektro ns. So ganz recht wollte Balewski den Messungen anfangs nicht trauen. Sie dachten, sie hätten einen weiteren Artefakt, eine technische Panne, gemessen. Doch bei näherem Hinsehen erwies sich die kollektive Reaktion der Atomwolke auf das Elektron als real. Dann setzte sich Balewski mit den theoretischen Physikern David Peter und Hans Peter Büchner zusammen, um „dann auch in der Theorie zu verstehen, was passiert“. Und es passte gut.

„Wir waren vom Ergebnis überrascht“, erklärt Balewski. Er und seine Kollegen wollten eigentlich untersuchen, was passiert, wenn man das Elektron mit dem Laser auf immer weitere Bahnen schickt. Der einfach positiv geladen Rubidium-Kern kann dann sein Elektron nur noch ganz schwach an sich binden. Das Atom ist mit einem Radius von zwei bis fünf Mikrometern so groß, dass ein Virus oder kleines Bakterium darin Platz fände.
